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Motivation

• Application performance is what we care about 
most.

• Using real applications for performance work can 
be very tedious. 

• Synthetic benchmarks are much easier.
• But we generally don’t understand how the 

performance of synthetic benchmarks relates to 
applications!

• Is there a methodology to create synthetic 
benchmarks, which capture the main 
performance effects of real applications? 



Approach

• Select the main performance aspects of 
our codes.
– (or what we believe they are).

• Develop a quantitative characterization for 
these performance aspects.
– Avoid using any specific hardware models for 

this characterization as far as possible!

• Develop a synthetic scalable performance 
probe implementing these characteristics.



Approach cont.

• Test the usefulness of the 
characterization with a set of codes.

• If we succeed the synthetic 
benchmark performance can be used 
as approximation for the application.

• Initial focus is the performance 
influence of global data-access.



Outline

• Application Performance 
Characterization (Apex)

• Memory access probe (Apex-MAP)
• Test Kernels
• Results and Correlations
• Extensions



Application Performance 
Characterization (Apex)

• We ignore computational aspects 
(for now).

• We view data access as composed of 
one or multiple data access streams.

• We characterize data access streams 
independent of each other. 

• We try to use as few streams as 
possible (one).



Performance Aspects of 
Data Access Streams

• Regularity – 2 extremes:
– Random walk in memory
– Regular advance in memory

• Data set size (M)
• Length of contiguous data access (L)

– Vector Length
• Temporal Locality (Re-use of data)

– Characterized by the mean (k) of the number of 
accesses to the last location within the next M
accesses.

• Stride (for regular access streams?)



Re-Use Number

Define a “re-use” number:
• Let M be the used memory in words.
• The code has a total of N data accesses.
• We look at all the accesses to a memory 

location X within the next M data access 
steps.

• We call the average k of all these access 
numbers the re-use number k.

M N

X



Synthetic Benchmark

• Now we design a synthetic 
benchmark which:
– Generates a single data access stream.
– Has our performance parameters as 

input.
– Is scalable.
– Is free of architecture specific 

performance artifacts.



Execution Model

• Use an array of size M.
• Access data in vectors of length L.
• Random: 

– Pick the start address of the vector randomly.
– Use the properties of the random numbers to 

achieve a re-use number k.
• Regular:

– Walk over consecutive (strided) vectors 
through memory.

– Re-access each vector k-times.



Memory Access Probe 
Apex-MAP

For random access we choose:

• Use an 1024 address index for data access.

• Use the Power distribution for the non-uniform 
random address generator.

– Self-similar and thus scale invariant.

– Exponent ? in [0,1]

• ? =1 : Uniform random access.

• ? =0 : Access to a single vector only.



Apex-Map:
Inner Loop - Random

for ( i = 0; i < N; i++) {
initIndexArray(I);                                  Initialize addresses
CLOCK(time1);
for (j = 0; j < I/4; j++) {                          Unrolled four times

pos  = ind[j*4];
…
for (k = 0; k < L; k++) {                    Vector access

res0 += data[pos  + k];
…

}
}
CLOCK(time2);

}
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Memory Hierarchy Test

L=1; uniform random (a=1)
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Memory Hierarchy Detail

L=1; uniform random (a=1); Seaborg

0.1

1

10

100

1000

1,000 10,000 100,000 1,000,000 10,000,000 100,000,000

M [kB]

ti
m

e 
[c

yc
le

s] Write
Read



Vector Length

Uniform random (a=1); Seaborg
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Validation - Ideal

• Take a set of test codes.
• Characterize them by selecting 

parameters.
• Time them.
• Run Apex-MAP with the same 

parameters.
• Check the correlation between the 

timings.



Validation - Real

• Use random access for all kernels to start 
with.

• Choose M to be the memory used by the 
kernel.

• Count the total number of memory 
accesses on a reference platform. 

• Do a least-square fit of the times per 
access to determine a single set of L and k
for all platforms. 
– 1 = L = 16k  (powers of 2 or 4)
– a ={0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1}



Test Kernels

• Radix (Integer Sort)
• N-Body (Interaction of N bodies in three 

dimensions)
• NAS CG (Conjugate Gradient, sparse linear 

systems)
• FFT (1-dimensional complex FFT)
• Matrix Transpose
• Matrix Matrix Multiplication

– This is included as ‘worst’ (least fitting) test-case.



Statistical Details

• Linear Timing Model: 
Kernel = Factor * Apex-MAP

• No constant!
• Minimize the combined SSE (R2).
• This does not always give a clear 

best choice.



R2 – Example
FFT on Seaborg

0.001 0.003 0.005 0.010 0.025 0.050 0.100 0.250 0.500 1.000
1 0.78 0.94 0.93 0.79 0.52 0.36 0.19 0.16 0.21 0.24
2 0.62 0.88 0.96 0.85 0.61 0.38 0.27 0.25 0.26 0.28
4 0.52 0.78 0.95 0.91 0.68 0.47 0.32 0.27 0.28 0.31
8 0.37 0.64 0.89 0.98 0.81 0.59 0.40 0.33 0.33 0.36

16 0.26 0.50 0.74 0.94 0.93 0.72 0.52 0.41 0.40 0.43
32 0.19 0.33 0.53 0.79 0.98 0.88 0.70 0.56 0.52 0.53
64 0.10 0.22 0.36 0.60 0.90 0.97 0.90 0.76 0.70 0.69

256 0.03 0.08 0.13 0.25 0.54 0.82 0.97 0.87 0.81 0.79
1024 0.02 0.04 0.08 0.15 0.37 0.68 0.94 0.92 0.85 0.83
4096 0.02 0.05 0.09 0.16 0.39 0.73 0.96 0.89 0.83 0.79

16384 0.02 0.06 0.14 0.28 0.63 0.94 0.90 0.66 0.58 0.56

R-Square 
a 

L
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Matrix Transpose - regular

L=M/stride; stride=f(M)
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Parallel Radix – Early Tests
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Parallel N-Body – Early Tests
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Parallel CG – Early Tests
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Experiences

• A lot of the difficulties are in choosing the 
right details of the implementation.
– Too many alternative implementations 

possible.
– Which optimizations should one consider?

• The amount of measurements to do and to 
analyze becomes easily overwhelming.
– Currently we take in the order of 3000 

measurements per systems for the sequential 
study alone. (and we do it multiple times)



Conclusions

• Approximation of the more irregular 
kernels by a single power function 
random access stream works fine.
– In particular in the sequential case.

• The regular kernels are hard to 
approximate with random access 
streams and need a regular access 
stream.

• Backfitting L and k is not trivial. 


